xsok Version 1.00 Manual

Michael Bischoff
16-Nov-1994

Contents

1 Introduction

1.1
1.2

WARNING,
xsok — A Generic Sokoban Game for X11

2 Adding New Level Subsets

3 Keyboard and Mouse Commands

4 Bells, Whistles, and Doodads

4.1
4.2
4.3
4.4
4.5

Internationalisation
Saving Games
Format of a Highscore File
Format of a Savegame File
Taking Back Moves

1 Introduction

1.1 WARNING

Be warned. This manual is under construction. It may currently contain a
lot of typos, bad English, bad style, and it’s unfinished. The information
herein should be correct, however.

1.2 xsok — A Generic Sokoban Game for X11

Similar to Tetris, almost every operating system has an implementation of
the Sokoban game. It baffles by its easy rules, but nevertheless complex
strategies.

For Linux, I found a textmode implementation and an X11-based version,
both written 1992. The X11 version seemed to be based on the textmode
version, and both use the same format for the level definition files.

xsok is a generalization of the standard Sokoban game. All original
Sokoban levels may be played with xsok (again, using the same format for
the level definition files). Some levels of a similar MSDOS game, Cyberbox,
may be played also.

xsok is a one-person game played on a square-tiled board. It has no
random elements, and is a pure strategic game. There are different floor
types and walls, and objects standing on the floor. The objective is to push
certain objects onto marked target squares, and to move onto the EXIT
square, if one exists. The objects on the floor, which we will refer to as
boxes, have certain attributes, such as weight, value, possible directions of
movement, and own power. A special kind of object is the player itself. He
has a certain power, which represents the maximal sum of the weights of
the boxes he can push in a single move. The default power is one hundred,
and equals the weight of a standard box. There are lighter (empty) boxes of
weight one, which simply block your way, especially since some of them may
be moved either only horizontally or only vertically. Some boxes even show
interest in moving themselves into a certain direction, and may even push
standard boxes! (I have no explanation for this phenomenon!) Luckily, most
boxes are marked with arrows and color, so that you may distinguish them.

As well as the boxes, even the floor squares may have attributes. In
Sokoban, the only floor attribute was the distinction between normal floor

and target spaces. In xsok, there may be different target spaces, for different
box types. Some squares may be passed in only one direction, or restrict
the box types which may be moved upon them. There are floor types which
turn boxes, by 90 or 180 degrees. Some squares may give you power cookies,
others let you suffer from weakness.

To manage this zoo, all possible levels are partioned into level sets, which
share a common subset of the possible square types. A level set definition
file assigns the attributes to characters.

The definition table for the floor types must follow a line with the contents
“;WALLS” in the level subset definition file. For a floor type, there are the
following attributes.

field | format | description

char | ascii character, by which this floor type is identified in the level file

pic hex offset into the graphic data file

enter | hex one bit set for every direction from which any object may enter this square
leave | hex one bit set for every direction to which any object may leave this square
mask | hex one bit set for every object class which is allowed on this square

effect | dec identifies a special effect (rotation, target, exit)

The format determines how the entry is interpreted: as ASCII character,
as hexadecimal number, or as decimal number. You may not use the ’;
sign as ASCII representation of an object or a floor type, since it introduces
comments and commands. Picture id 0 is reserved for the standard walls:
There are 16 different tiles, from which one is selected depending on the 4
neighbour squares.

The effect field has the following meaning.

effect mod 100 | description

no effect

rotate counterclockwise by 90 degrees
rotate by 180 degrees

rotate clockwise by 90 degrees

this is a target square for boxes

this is the exit square

increase power by 1

decrease power by 1

teleport

OO Tl W+~ O

If the effect field is less than 100, the effect will affect every object once
it enters the square. If the effect is at least 100, but less than 200, the effect
will affect the first object which enters the square, and then the square will
be substituted by a standard floor square. The standard floor square is the
floor type which occurs first in the table. If the effect field is at least 200,
the square will change to floor type (effect-200) / 100 once it is free again.

A teleporter will teleport any object on it to the first free teleporter
available, or do nothing, if all other teleporters are occupied.

The definition table for the object types must follow a line with the con-
tents “;0BJECTS” in the level subset definition file, and must be behind the
floor definition array. For an object, there are the following attributes.

field format | description

char ascii character, by which this floor type is identified in the level file
pic hex offset into the graphic data file

movedir | hex one bit set for every direction in which this object may move
pushdir | hex one bit set for every direction in which this object

will move automatically
weight | dec the weight of this object

power dec the power which the object has for moving
mask hex defines the object class (multiple classes are possible)
score hex the bonus you receive if this object is on a target square

The object which represents the man is the first object in the table.
Its mask entry must be 1, since this is hardcoded into the program. The
mask entry should only use bits 0 to 15. The higher bits are needed for the
Cyberbox selectors, their coding is subject to change.

2 Adding New Level Subsets

If you want to create new level subsets, create a text file gametypes in the
directory /usr/games/1ib/xsok, where every line of this file represents the
name of a new level subset. Suppose you want to create the subset Foo. Cre-
ate a description in the file /usr/games/lib/xsok/Foo.help. Create a sub-
directory /usr/games/1ib/xsok/Foo, and put in a file definitions and the
files screen.?? for the levels. For examples, see the subdirectories of the 1ib

4

directory in the source distribution. Edit the level files until you are satisfied.
Then, you may concatenate all the files in the /usr/games/1lib/xsok/Foo
directory using the combine program, and create the more compact file
/usr/games/1lib/xsok/Foo.def.gz.

The level file simply is an ASCII representation of the floor types and
objects. The floor below an object is by default the first floor type which
occurs in the definitions file. If you need another combination (for example
a box already on a target square), you have to dedicate a new character for
this combination, and add an ATOP command in the definitions file. In
Sokoban, a box is represented by a dollar sign and a target square by a dot.
For a box on a target square, a star is used. The defining line in the Sokoban
definitions file is “;ATOP *$.”. The possible commands for the level files are
the following.

command description
; AUTHOR string | the author of the level
; COMMENT string | a level comment or hint

The possible commands for the definition files are the following. They
occur after the floor and object definition tables.

command default | description

;MAXLEVEL no 99 | the maximal level number

; PUSHCOST no 10 | score reduction for every push

; MOVECOST no 1 | score reduction for every move
;ATOP cof — | defines object/floor combinations

3 Keyboard and Mouse Commands

In xsok, keyboard and mouse commands are bound to functions using an
ASCII key definition file.

There are two classes of bindings: Built-in assignments have the least
priority. Only the following commands are built-in:

key action
Ctrl-L | redraw the window
Ctrl-R | redraw the window
<ESC> | abort a move
“c” switch to Cyberbox levels
“g” switch to Sokoban levels
“X” switch to Xsok levels

These bindings can be extended or overridden by the loadable keyboard
table, which may be different for every national language. The default file
resides in /usr/games/lib/xsok/keys. With this file, you may define one
key or mouse button per line. The format is jspecifier; jcommands. A spe-
cifier is a single character, or the string #x, followed by the hex representation
of the key, one of the strings Up, Left, Down, or Right (which correspond to
the arrow keys of your keyboard), or the string Mousen, where n is a digit
from 1 to 5. It is currently not possible to assign commands to the function
keys.

The possible command names and their meaning are
None Do nothing if this key is pressed. Only used to remove built-in bindings.
rq-LeaveSok Popup a window and ask whether to leave the game. If you are
at the beginning of a level, or finished the game, no confirmation is requested.
rq-NextLevel Request to proceed to the next level.
rq-PrevLevel Request to go back to the previous level.
rq-RestartGame Request to restart the game. Not really needed, since re-
starting may be undone.

Up, Left, Down, Right Move the man one square in the specified direction.
NextUnsolved Proceed to the next unsolved level.

NextLevel Proceed to the next level.

PrevLevel Go back to the previous level.

UndoMove Undo an elementary move, or the restart command. You may
undo all moves back until the start. Undoing moves may be slow, however.
RedoMove Redo a previously undone move.

LeaveSok Unconditionally quit the game.

ShowScore Show your current score, and other information. This is auto-
matically done after every succesful move.

ShowBestScore Show the largest score, minimum number of moves, and min-
imum number of pushes known for solving this level.

ShowAuthor Show the name of the author of the current level, as given by
the ; AUTHOR directive in the level file.

RestartGame Go back to the starting position.

ReplayGame Replay the game at about 14 moves per second.

SaveGame Store the current position in the file
/var/games/xsok/Levelset. level .sav.

LoadGame Restore a previously saved game. If none exists, restore a solution
file /var/games/xsok/Levelset. level .sol.

ReadScores Re-read the highscore table. (It may have been modified by
some other player on your machine.) Highscorefiles are reloaded automatic-
ally at the beginning of every level, and when you finish a level.
ShowVersion Will display the current xsok version. ResizeWindow Obsol-
ete. Is called automatically, if the level size changes.

RepeatMove Repeat a move in the previous direction. (In xsokoban, this one
is assigned to the middle mouse button.)

MouseMove If pressed on a clear square, the man will move to that location
via the optimal path if such a path exists. If pressed on an object that is
adjacent to the player, the object will be pushed.

Since coordinates are needed, this function should only be bound to a
mouse button.

MousePush If you click onto a square with same x or y coordinate as the man,
the man will walk straight to this square, possibly pushing any boxes on the
path. This is useful for pushing a box multiple squares along a straight path.
Since coordinates are needed, this function should only be bound to a
mouse button.

MouseUndo Undoes one of the previous two compound move operations, or
a PlayMacro operation. Currently, this is allowed only immediately follow-
ing the operation to be undone, and only a single compound move may be
undone. If this situation does not apply, the command will execute an ele-
mentary undo operation.

LevelInfo Show the level comment, as defined by the ;COMMENT directive in
the level file. Shows the highscore for this level, if no comment is available.
DropBookmark Drop the bookmark at the current move number. In some
cases, a bookmark is dropped automatically. After a load game operation,
the bookmark is set at the end position. If a bookmark becomes invalid,
since you undid moves and continued with new ones, the bookmark will be
reset to the last common move number.

GotoBookmark Go to the bookmark.

StartMacro Start recording a move macro. A move macro is a sequence
of moves, which may be re-executed by a single command, if the starting
position does match. This is useful for some Sokoban levels, which tedious
repetition of long sequences.

EndMacro Define the end of a move macro.

PlayMacro Reexecute the move macro, i.e. move the man to the starting
position of the macro by the MouseMove command, then repeat the recorded
moves. If the path is blocked, macro replaying stops at that point.

Cancel Cancel a confirmation.

Confirm Confirm a confirmation.

The default assignment is

key action
“y” confirm action
“n” abort action
“q” quit game (confirmation requested)
“v7 show version number of xsok
“a” show author of a level (if known)
“b” show best scores for this level.
“i7 show witty quote for a level (level comment)
“u” undo a move
“r” redo a move
‘o show your current score
“s” save the game
“L” load a game
“c” drop the bookmark
“ctrl-U" | goto bookmark
“R” restart this level
“N” go to next level
“p” go to previous level
“ur go to the next unsolved level
“Wr resize the window

4 Bells, Whistles, and Doodads

4.1 Internationalisation

The Athena widget set allows the redefinition of button labels by resource
files. All other texts have also been made reconfigurable. The X-window
system uses the contents of the LANG environment variable to select the path
for the resource file (application defaults file). Currently, the code is there,
but there are no example translations. If xsok doesn’t work, run it with your
LANG environment variable set to the empty string.

4.2 Saving Games

You can save the current state of the game by pressing the left mouse button
on the “save game” button. xsok will try to create a file in the directory
/var/games/xsok with its name consisting of the name of the level subset,
the level number, and the extension .sv. If you solve a level and break the
highscore, the game is saved automatically. There are three different file
extensions: .bs for best score, .mp for minimal number of pushes, and .mm
for minimal number of moves. If some of them are identical, links will be
used to save disk space.

4.3 Format of a Highscore File

A highscore file is organized as array of 300 4-byte integers. The repres-
entation is machine-independent, using high-byte-first ordering. This allows
exchanging files between workstations and PCs. The first entry holds the
magic, 0x741d. Entries 1 to 99 hold the best known score for the respective
level. Entry n + 100 holds the minimal known number of moves to solve it,
and entry n 4 200 the minimal known number of pushes. Entries 100 and
200 are unused and have value OxTftftf.

4.4 Format of a Savegame File

A savegame file starts with a header of 16 4-byte integers in machine-independent
representation. The entries are as following.

Entry | Description
0 | Magic number, 0x741c
1 | score
2 | number of pushes
3 | current move number
4 | time saved
5 | 1 if level finished, 0 else
6 | level number
7 | number of stored moves
8 | move macro start
9 | move macro end
10 | move macro x
11 | move macro y
12 | position of bookmark
13] -1
14 | -1
15| -1

After this array, an array of 8 characters, representing the level subset
name, is stored. The level and level subset information is currently not
checked at load time, this may be done later.

After the level subset name, a one-byte charcter count is given, and the
username of the player, as string of the given length. The terminating zero
byte is not stored.

Finally, the array of moves is appended, whose length is given by entry 7
of the header.

4.5 Taking Back Moves

xsok logs every move. This gives you the possibility of unlimited undo.
Undoing is done by restarting the level and replaying it. Therefore, undo may
be really slow after some hundred moves. For Sokoban rules, a better undo
would be possible, but for the general case, a move may involve complicated
actions.

10

